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AIIItract-We study the bending of a thin plate with rapidly varying thickness, for example one
with rib-like stiffeners or perforated by small holes. We obtain a fourtb-order equation for the
midplane displacement, using an asymptotic analysis based on three-dimensionallincar elasticity.
The coefficients of this equation represent the constitutive law relating bending moments to
midplane curvature; they are explicitly determined by the plate pometry. Our analysis
distinguishes between three different cases, in which the thickness varies on a length scale longer
than, on the order of, or shorter than the mean thickness.

I. INTRODUCTION

We study pure bending ofa linearly elastic plate with rapidly varying thickness. We restrict
our attention to symmetric plates. and to loads transverse to the midplane. Our method
is that of asymptotic analysis. using a multiple-scale approach[6. 28. 41] as the plate
thickness tends to zero. The fine-scale structure of the thickness variation is assumed to
be periodic or quasiperiodic; the model encompasses, for example. plates stiffened by one
or more families of ribs. or perforated by finely spaced holes.

Let ( denote the mean plate thickness; we suppose that the thickness varies with length
scale (a. 0 < a < 00. and that the load per unit mid-plane area is (3F(xto Xl)' As £ ....0. we
find that

(a) The limiting mid-plane displacement w(x,. Xl) satisfies a fourth order equation

(1.1)

(b) The tensor M"'rD(Xto Xl) depends explicitly on the plate's geometry, through certain
auxiliary functions which may be computed numerically.

(c) One can estimate the stress in the three-dimensional plate. with error o(£} as £ ....0.
The formulas for M«h6 andfor the stress in the three-dimensional plate depend critically on
whether a < I. a = I. or a > I. In a sense. therefore, we are presenting not one model but
three separate ones. for geometry variations slower than, on the order of, and faster than
the mean thickness. When a < I, our model is equivalent to "homogenizing the Kirchhoff
plate equation"; when a > 1. it corresponds to "homogenizing the rough boundary, then
using Kirchhoff plate theory". The case a =1 apparently has. no such simple inter­
pretation.

Plates with densely spaced stiffeners have recently attracted much attention in the
literature on structural optimization[11-13, 31. 32, 39]. One expects a plate with properly
designed stiffeners to be more efficient in the use of material-i.e. stronger per unit
weight-than any uniform or slowly-varying structure. in certain design contexts. Several
authors have demonstrated this assertion. using specific models for the behavior of
stiffened plates [1 1, 12,25,33]. These developments point up the need for a systematic study
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of variable-thickness structures, based on three-dimensional linear elasticity; the present
work represents a step toward that goal.

Many authors have used asymptotic analysis to derive plate and shell theories, see
e.g.[14, 19-21, 26,40], and it has been recognized that rapid thickness variation can be
allowed if the expansion is done properly[26]. The homogenization of plate equations, on
the other hand, has also been studied extensively[2, 3, 12, 13, 16, 17,30, 32, 34, 35, 39].
The methods of this paper are a blend of these two approaches. Our work is closely related
to that of Caillerie[8-lO], who has studied flat plates with periodically varying com­
position, using a scaling that corresponds to our a = 1.

The analysis presented here is purely formal. We feel confident, however, that our
model represents the correct limiting behavior of the three-dimensional solution, under
modest regularity hypotheses on h(x; ,,). A convergence result of this type is proved in [23]
for the a = I scaling, in case h =h(,,) is purely periodic and the plate edges are clamped.
The corresponding assertion for a homogeneous, flat plate is, of course, well known[4,
36-38, 42], and an analogous result is proved in[lO] for the problem studied there.

We wish to thank George Papanicolaou for sharing generously both his knowledge and
his enthusiasm in many discussions related to this work.

2. PRELIMINARIES

This section establishes notation, describes precisely the problem we consider, and
summarizes briefly our method.

We shall write :5 = (Xl> X2' X3) for vectors in 1Il3, and x = (Xl> X2) for vectors in 1Il2• Latin
indices will range from 1 to 3, and Greek ones from I to 2; the summation convention
applies whenever indices are repeated. We write o/=%x/ and Oij=02/0X•.f}Xj •

(a) Linear elasticity
Associated with any displacement H =(UI' U2, U3) of 1Il3 is its strain tensor

(2.1)

and the corresponding stress tensor

(2.2)

The fourth-order tensor Bijlcl satisfies

(2.3)

we assume the elastic energy

(2.4)

is positive definite on symmetric tensors.
We shall always assume that the horizontal planes are planes ofelastic symmetry. This

means[29]

so that Hooke's law (2.2) becomes

(1,.p = B,.f1r6eyd + B.m e33

(1t<3 = 2Bt<3P3eP3

(133 =B3~"P+ B3333e33'

(2.5)

(2.6)
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(2.7)

according to standard Kirchhoff plate theory, the rigidity tensor associated to a flat plate
with (rescaled) thickness 2h is

(See Section 2e).
For an isotropic material with Young's modulus E and Poisson's ratio v, the nonzero

components of BIjkJ are

E(l- v)
Bjjj

; =(I + v)(l - 2v)

Ev
B i ""}'

iW = (I + v)(1 - 2v)

B IE" .J.J'
Bjjlj = 1jji=21 +v r

(no summation convention). In that case

(b) Platt? geometry
The plate geometry is detennined by

a domain n in the X I-X2 plane, representing the midplane;

a real parameter a, 0 < a < 00, detennining the length
scale of the thickness variation; and

a function hex; ,,) ~ 0, defined for xeQ and" e R2•

The three-dimensional region occupied by the plate is

(2.8)

(2.9)

(2.IOa)

(2. lOb)

(2.lOc)

(2.11)

where £ is a small parameter.
We allow h(x;,,) = 0 for some values of (x; ,,); hence the three-dimensional plate may

have holes. We also allow h to be discontinuous. We assume, however, that

For each xeO, {"eR2 :h(x;,,) > O} is connected; and

h is bounded away from zero on the set where it does
not vanish, i.e. h(x; ,,) > 0 => hex; If) > C, for
some constant C > o.

(2.12a)

(2.12b)
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A further hypothesis is needed concerning the dependence of h on ". We shall focus
in Sections 3-5 on the simplest case, that of locally periodic structure:

h(x; ,,) is periodic with period I in '71 and '72' (2.13a)

The case of "quasiperiodic" local structure will be addressed in Section 6; by this we mean:

h(x;,,) = H(x; atl(X) . ,,; ... ; atJx) . ,,), for some
functions at,{x)eIR2(1 ~ i ~ N) and H(x; II" •• , IN) ~ 0,
H being periodic in II' ... , IN with period I.

(2.13b)

To clarify the scope of the latter hypothesis, consider a plate with N families of ribs,
each having smoothly varying density and direction. Suppose g,{t), ItI< 1/2, represents the
profile of a single rib in the ith family; let latAx)1 represent the relative density of the ith
family at x, and when at; :f:; 0 let at;/lat;1 be directed orthogonal to the ribs. One can model
this situation by extending g;(/) periodically and taking

(2.14)

We shall denote by o+R(£) and o_R(£) the upper and lower faces of the plate. If h(x,,,)
is continuous then

(2.15)

if h is discontinuous than a±R(£) has vertical parts as well.
We assume for simplicity that the plate is homogeneous. (The case of varying material

composition can, however, be treated using the same method.)
It will often be necessary to average a periodic function g(x;,,) with respect to ,,:

I 1PI1p2

.,({g(x) = - g(x; ,,) d'7l d'72'
PiP2 0 0

(2.16)

where P; are the periods of g(x; .). In what follows, all functions will have period I unless
explicitly stated otherwise.

(c) Loads and equations ofequilibrium
We suppose that the plate is loaded along its faces a±R(£) by forces £3(0, O,f±(x, x/£"»

per unit midplane area, where

f+(x;,,) andf_(x;,,) are defined for xen and "eIR2,

and are periodic or quasiperiodic in ,,; also,
f+(x;,,) =f_(x;,,) =0 whenever h(x;,,) == O.

(2.17)

The scaling of the load has been chosen so that the vertical displacement of the plate
remains bounded as £-+0. We allow the load to vary rapidly, since in practice one might
load a ribbed plate just along the top of the ribs. Only the mean force per unit midplane
area

(2.18)

will appear in the limiting equation for the midplane displacement.
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The equations of elastostatic equilibrium for the (-dependent three-dimensional plate
are

0A<Tij(Y')] = 0 in R«(), i == 1,2,3,

where <TiY) is given by (2.2). The boundary conditions on the plate faces are

where !1( is the outward unit normal vector, Le.

(2.19)

(2.20)

(2.21)In3'1-'~' == (-( oh _ ('-II oh, _£ oh _ ('-II 0\ ± I)
ox\ 0'1\ OX2 0''t2

whenever h is differentiable. We postpone the discussion ofboundary conditions at the plate
edges until the end of Section 2(d).

(d) The melhod
Our goal is to find a limiting "effective equation" for the vertical displacement U3' as

( ....0. We use a variational approach, with the well-known method of multiple-scale
asymptotic expansions[6, 41J as motivation. The following discussion applies only to the
locally periodic case (2.13a).

One begins by postulating an ansatz for If(

Ie

u' - u* == ~ ('IU(i)(X' xl(II. X 1£).- - i." - , , 3
;.0

(2.22)

Each fi') = 1f(')(X; ,,; ,) is defined for xeO, "ER2,1,1 < h(x; ,,), and is periodic in 'lit '12' The
first term in (2.22) has the form

('OIf(O)(X;,,; ,) = (0, 0, w(x»,

where w, the limiting vertical displacement, is an as yet undetermined function of x.
The remaining exponents Ii > 0 and functions If(l) are chosen differently depending on

whether a < I, a = I, or a> 1. In each case, the formulas have been obtained by
substituting the formal expansion (2.22) into (2. I9) and (2.20), collecting terms with like
powers of (, and solving successively for the functions y(/). Thus (2.22) represents the first
few terms of a full asymptotic expansion for If'; we keep only those terms that produce
strains of order (. The procedure just described is now standard; we shall therefore present
only the ansatz so obtained, omitting the details of its derivation.

The fourth-order "effective equation" for w is obtained as follows. One can write the
strain of y* in the form

(2.23)

where X'f/(x;,,; ,) are explicit, ,,-periodic functions depending only on the plate geometry,
and

X't/ == Xft·

Substituting (2.23) into the energy expression

(2.24)
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integrating with respect to " averaging in 'I, and discarding tenns that are 0(£3), one is
led to consider

(2.25)

where F is given by (2.18) and

(2.26)

The function w must minimize (2.25), i.e. it satisfies the effective equation

(2.27)

Once w is known, (2.23) gives an approximation for the strain of ~( in the three­
dimensional plate, with error 0(£).

Note that by (2.3) and (2.24)

also, since the elasticity tensor BIJIt:/ is positive definite,

MfI,t!6tfl,pt76 ~ 0

for any symmetric 2 x 2 tensor tfl,p' and

MfI,PY6tfl,pty6 = O-X':ftfl,p = 0 all i,j.

(2.28)

(2.29)

(2.30)

Equation (2.27) must be combined with appropriate boundary conditions for w at 00.
At a clamped edge, the three-dimensional solution satisfies

y' =0 on C(£),

where C(£) denotes the plate edge

C(£) ={.!: XEOO, IX31 < £h(x; X/fa)}.

(2.31)

(2.32)

The boundary conditions for ware obtained by imposing (2.31) on the leading tenns of
(2.22):

w=0, naafl,w =0 on ao.

At a simply-supported edge, y( satisfies one displacement boundary condition

and the complementing "natural" conditions

The corresponding conditions for ware the analogue of (2.34a),

w =0 on ao

(2.33)

(2.34a)

(2.34b)

(2.3Sa)

and the complementing "natural" boundary condition for the variational problem (2.25),

(2.35b)
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Similarly, at a free edge w satisfies the full set of "natural" boundary conditions for (2.25),

(2.36a)

(2.36b)

The vector n = (n l , n2) in (2.33}-(2.36) is the unit vector normal to an, and t in (2.36b)
is the unit tangent vector along an, counterclockwise.

2(e) Slowly-varying plates
To clarify the method, we sketch briefly how it applies when the plate thickness varies

slowly-i.e. when h =h(x) does not depend on". One recovers Kirchhoff plate
theory[I,38) in this case.

The appropriate form for the ansatz (2.22) is

(2.37)

One computes that (2.23) holds with

using the notation

It follows that

otl = {Ol if (i,j) = (k, I) as ordered pairs
otherwise.

(2.38)

(2.39)

where Bmp}", is defined by (2.7).
For the isotropic constitutive law (2.8), substitution of (2.9) into (2.39) leads to the

effective equation

where

_ 2£ 3

D - 3(1 + v) h (x).

3. THE CASE 0<1

Suppose (2.13a) holds, i.e. h is periodic in", and a < 1. The mean thickness of the plate
is then much smaller than the length scale of the thickness variation.

For the duration of this section only we define

Q(x) = {'I eR2:h(x;,,) > O}. (3.1)
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in Q(x). If oQ(x) '" 0, the boundary condition there is the natural one corresponding to
the minimization

(3.3)

the minimum being taken among ,,-periodic functions. One verifies easily that t/J0P exists
and is unique on Q(x), up to an additive function of x. Note that x enters (3.2) and (3.3)
only as a parameter.

The ansatz (2.22) for this case is

(3.4)

Recall that Oy =%xy; the right side of (3.4) must be evalua~ed at ,,= X/Cll after
differentiation. One computes that (2.23) holds with

(3.5)

Substituting (3.5) into (2.26), we obtain

(3.6)

(3.7)

(3.8)

By Green's formula, (2.16), and (3.2),

thus (3.6) may be rewritten

[23 - ] [2 3 - a2
t/J'" ]

MtlfJ'llJ(x) =J{ '3 h BtlfJylJ +J{ '3 h Bop"" o"po"" .

If hex; ,,) does not depend on II, then t/J0P is independent of", and (3.7) is identical with
(2.39).

Hypothesis (2.12) implies that MofJ'llJ is positive definite. Indeed, if toP is a symmetric 2 x 2
tensor and MofJylJtoptylJ = 0, then X:!to/1 = 0 by (2.30), whence by (3.5)

(}2

m,yfJ"lJ (t/Jtl(Jt«/1) = - tylJ'

Since t/J0P is ,,-periodic, (2.12) and (3.8) imply t ylJ = 0 (y, b = 1,2).
The same effective equation (2.27), (3.7) is also obtained if one homogenizes the

standard plate equation (2.27), (2.39), see[I7].

4. THE CASE a=1

Suppose h is periodic in " and a = I. In this case the thickness varies on the same scale
as the mean thickness.
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The following conventions apply to this section only. We shall write '73 instead of e
for the rescaled vertical coordinate X3!i. If 4! =(4)1,4>2,4>3) is a function of ~ =(t1l, '72' '73)
we define

We denote by Q(x) the rescaled periodically-varying "plate" with thickness h(x; .)

Q(x) ={'1 :1'73\ < h(x;" )};

(4.1)

(4.2)

a+Q(x) and a_Q(x) represent its upper and lower faces. i.e. (when h is continuous)

and £(x;,,) is the outward unit vector normal to o±Q(x).
Theansatzfora = I depends on auxiliary functions 4>.II(x; '1)(<<./3 =1.2;4>12 =4> 21) which

are periodic in '11 and '12' They solve - - --

(4.3)

with boundary conditions

(4.4)

on a±Q(x). One verifies by a standard variational argument that 4>.11 exists and is unique
up to an additive function of x. Once again. x enters (4.3). (4.4) only as a parameter
determining the geometry of Q(x).

The ansatz (2.22) for this case is

11* =(-x3alw, -X3a2W, W+~ 88.1133 (X3fa.IIW) +£24!.IJ(X; ~/£)a.llw, (4.5)
3333

One computes that (2.23) holds with

(4.6)

()~ being defined by (2.38). Substituting (4.6) into (2.26). we obtain

M.~ = ..N[f ("3)2B.IIYb d'13J - ..N[f'11Bj.pybE;.p(cp·IJ) d'13J

- ..N[f '11B-ft;.pEA,t(f7tS) d'71J + ..N[fEii(f-ft):Eif7b)d'13J (4.7)

each integral being taken over the intervall'hl < h(x; II). By Green's formula. (4.3)-(4.4),
and (2.16),

(4.8)
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therefore (4.7) may also be written

(4.9)

If hex; y) is independent of". then tPy~ is independent of '1. and coincides with (2.39).
Hypothesis (2.12) assures once again that Mll/lyO(x) is positive definite: for any 2 x 2

symmetric tensor Ill/l' we know from (2.30) that Mll/l~/ll/ilyo = 0 implies X;l/ll/l =0
(Y. b = I. 2); in that case

(4.10)

By (2.12), the slice Q(x) n {'13 =c} is connected for C :::l:: 0; and by (4.10) ';«#1./1 is a periodic
function with constant strain on each slice. It follows that

E~(1t/l/«#)=0 y, b =1,2

for 1'131 sufficiently small, whence using (4.10) 116 =O.

S. THE CASE a> 1

Suppose h is periodic in " and a > I. In this case the plate thickness varies on a scale
much smaller than the mean thickness.

The following notation will be used in this section and in the appendix. If tP = (tPl> tP2)
is a function of" = ('1" '12)' we define

We denote by Q(x; 0 the rescaled slice of the periodic "plate" at height X3 =E:e:

Q(x;~) = {" :Iel < hex; tIl};

v will denote the outward unit vector normal to oQ in the (11\, '12) plane. Let

{
I if "eQ(x,~)

10.... ~)(,,) = 0 otherwise

and let (J be area fraction of the slice

(5.1)

(5.2)

(5.3)

(5.4)

If g(x;,,; e) is defined for" eQ(x,~) and is II-periodic, we denote its average over a slice
by

(5.5)

provided that Q(x; O:F tP (/0.II.;()· g takes the same value as g when" eQ(x; e), and takes
the value 0 otherwise).

The ansatz for a > I depends on auxiliary functions ';ii(x;,,;~) (I ~ i,j ~ 3,';ii = ';1').
They are periodic in ", defined for "eQ (x; ~), I~I< max, h(x; ,,), and they satisfy

(5.6)
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with boundary conditions

343

(5.7)

By (2.5). '" 13 =,,23 =O. A standard variational argument shows that ",ii exists and is unique
up to a rigid motion in". If Q(x; e> is connected this rigid motion is a function of x and
, only. but ifQ(x, ,) is disconnected it may include a linear function of". possibly different
on each connected periodic component. The strain E/Il/l(",11) is. however. unique.

The ansatz (2.22) for this case is

where g«1(x; e) and q,/IlI(x;,,; e) are defined by

i
~ B +8 E (""'/Ill)

g«/l(x; e) = 't 33«/1 33,..,.. .,. 33 (x; 't) d-r
o B3333 + B33,..E,..('" )

q,«1 = _ ,,,/Ill +a;; .,33.

As usual. the right side of (5.8) must be evaluated at " =X/l il
• , =xJ£..

One computes that (2.23) holds with

X~~ = - e6~+El P(q,/Ilf1)

X~f=O

og«1
X;f= Be'

(5.9)

(5.10)

(5.11)

where cS~ is defined by (2.38). Substitution of (5. I I) into (2.26) yields a formula for
M«h6(x); however, a simpler formula may be obtained as follows. Let

b/ll/lY5(x; e) = 8B,..;.,.[o7~ + E""("/Il/l)][o~ + EAp(,r6)]

b/ll/l33(X; ,) =8B;'p33[cS~~ +EAp(t/1«1)]

bm1(x; e) = 8[B3333 + Bi.p33EAp(t/l13)}.

We see from (5.9) that

and from (5.10). (5.11) that

X~= - ,[cS~~ + E;.,.(;/Il11) - bb,/133 E;.,.(;33)]
3333

Xjg =,b,/I33/b3111 •

By (5.6), (5.7) and Green's formula,

B,..;.,.E,..(piJ)EAp("'·~ = - B,...,E,..(",iI).

Substituting (5.14) into (2.26) and using (5.12). (5.15). one obtains

M«h6(x) = f" )2G«fIy6(X; e) de·

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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where the domain of integration is I~ I< max,h(x; ,,), and

(5.17)

Formulas (5.16) and (5.17) are precisely what one obtains by "homogenizing the plate
boundary" first, then using Kirchhoff plate theory. A full explanation of what this means
is given in the appendix.

The tensor M.flrJ is once again positive definite: if t.1I is any 2 x 2 symmetric tensor and
M'flrJt'/Jtl~ = 0, then X"jt'fJ = 0, by (2.30). It follows from (5.14) that

b./J33t./J =0

E;,,,(I/!·/Jt./J) = - t;,P'
(5.18)

Since Q(x; e) is connected for sufficiently small lei, (5.18) and the periodicity of ",./J imply
that t;". = O.

If the plate cross-section at height ~ is solid, Le. if Q(x; e) = 1R2, then each ",ij(x;,,; 0
is independent of", and b.f!"IJ(x; e) = D.~. These cross-sections make the same contribution
in (5.16) as in (2.39); in particular, (5.16) coincides with (2.39) when h is independent of
". If, on the other hand, the cross-section at height ~ is totally disconnected-in other
words, if Q(l; ~) consists of islands, each contained in a single period cell-then each ",ij

is linear in ". In this case b'fJrJ(x;~) = b.!J33(X; e) =0, and hence b./JrJ(x; e) = O. Such
cross-sections contribute nothing in (5.16).

6. QUASIPERIODIC STRUCTURE

If hex; ,,) is quasiperiodic in ". i.e. if (2.13b) holds. then it is in general not possible
to construct an asymptotic expansion for y' in powers of £. However. one can obtain the
rigidity tensor M'fJ~(x) for this case by a continuity argument based on the periodic one.
This procedure is supported by mathematically rigorous analyses of related
problems [22, 24].

Given data

we shall define a tensor

Ho(tl, ... , tN) periodic in each ti'
(6.1)

M.fJrJ represents the rigidity tensor of the quasiperiodic plate with rescaled thickness

(6.2)

its definition is different depending on whether a < 1, a = 1, or a > I. The tensor M./JrJ(x)
corresponding to (2.13b) is then obtained by taking

Suppose first that all the vectors l1.i have rational coordinates, and let p be the least
common multiple of the denominators; then ho(,,), defined by (6.2), is periodic with period
p in '11 and '12' The formulas of Sections 3-5 still apply in this p-periodic context. In
particular, (3.2), (4.3}-(4.4), and (5.6}-(5.7) have solutions that are periodic in " with
period p; and M./JrJ is defined by (3.7), (4.9), or (5.12}-(5.17).

This procedure defines M./JriHo; 11.1' ••• ,aN) only for rational vectors IX j • The results,
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however, depend continuously on at;; therefore it makes sense to define

345

in the general case.
This approximation procedure may be avoided in N = 2 and atl .L at2; that case arises,

for example, in modeling a plate with two orthogonal families of stiffeners. One may
arrange that at l = (c, 0) and at2 =(0, d) by performing a rotation of the coordinate axes; then
the thickness hois periodic, with periods Icl-I and Idl- I in 'II and '12 respectively, and so
are all the auxiliary functions.

7. EXAMPLE: ONE FAMILY OF STIFFENERS

The different scalings a < I, a = 1, and a > I generally yield very different results for
the effective rigidity tensor M.fJ76. An instructive example is provided by a single family
of rectangular stiffeners, which we model by choosing h =h('Il) as in Fig. I: h is periodic
with period I, taking two values hi < h2, and

We restrict our attention to the case of an isotropic material, so that Hooke's law is given
by (2.8).

For a < I, the -case of "slow" thickness variation, the relevant auxiliary functions 4J.P
are defined by (3.2). One finds that 4J 12 =0,

where c is the harmonic mean of h3

( h -3+ h -3)-1c = III I 112 2 •

Denoting by m the arithmetic mean

the nonzero components of M.P76 for this case are

M <I 2 E
rill =---c

3 1 - v2
<I 2 2 Ev 2

M~=-Em+---c
3 3 1- v2

2 EvMrtil =Mn~l=---c3 1- v2

M ,,<I_M,,<I_M,,<I_M,,<I E
1212 - 2112 - 1221 - 2\21 = 3(1 + v) m.

(7.1)

For a > I, the case of "rapid variation", the auxiliary functions ;ij solve (5.6), (5.7)
on the "slice at height ,", Q('). If "I < hi then;ij =0; if hi < I" < h2, then;ij is a linear
function of 'II and the nonzero components of E",(;iJ) are

EII(; ") = - I

EII (;33) = - v/(l- v)

EII (;22) = - vl(1 - v)

E (.1.12) - E (.1. 12) - !12 .,. - 21.,. - - 2'
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l--~l --+--~2~

Fig. I.

The nonzero components of M«~6 are

> I 2 2 Ev 2 h 3Mi222 =-Em +--- I
3 31 - v2

Q> 1 _ Q> I _ 2 Ev h 3
M 1122 - M 2211 - '3 1- v 2 I

Mfiii = Mil~i = MfuI1 = Mi;211 = E h 3
3(1 + v) I

(7.2)

in this case.
For the intermediate scaling a = 1, the auxiliary functions ¢ ", ¢22, and ¢ 12 = ¢21 are

defined by (4.3), (4.4). One verifies that - - --

¢" =_E_¢*
- 1- v2 - '

where cP *= (cP T, 0, cP n, and (cP T, cPn solves a plane strain elastici ty problem on the
stiffener cross-section

The function cP 12 = (0, cP2
12

, 0) solves a problem of antiplane shear, which is easily reduced
to Laplace's equation for cP2

12 on the same two-dimensional domain. By (4.8), (4.9), the
dependence of M«{Jy6 on these auxiliary functions involves only the energies

8* = .A'[fIv<eJ! *)Ev<eJ! *) dll3]

8 12 = Jt[f IiJ{eJ! 12)Ev<eJ! 12) dll3J.
in terms of which

MQ - I 2 E (E)2 '*1111 =---m- -- .,
3 1- v2 1- v2

Q _ I 2 Ev ( Ev )2 *M 2222 =---m - -- 8
3 1 - v2 1 - v2

MQ-I _ Mo-I _ 2 Ev E2v ••
1122 - 2211 - '3 1 _ v2 m - (1 _ V2)2 fD

Q _ I _ Q _ I _ Q _ I _ Q _ lIE 12
M 1212 - M 2112 - M 1221 - M 2121 = - --m - 8 .

3 1 + v

(7.3)
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We used the FEARS finite element code, developed at the University of Maryland, to
compute 4J. and 4J 12 for four choices of hi' h2, Ill' 1l2' using E = 1.0 and \I =0.25. The
geometries were selected to have the same total volume. Table I gives the computed values
of the energies, and Tables 2(a-d) compare the values of M.fJY~ corresponding to the
scalings a < I, a = I, and a> I.

Table 1. E = 1.0. v "" 0.25

hI h 2 III 11 2 E* E12

a) 1/3 2/3 1/2 1/2 .077 .027

bl 1/3 3/4 1/4 .149 .062

c) 1/4 3/4 1/2 1/2 .124 .047

d) 1/4 5/4 3/4 1/4 .302 .127

Table 2(a). hI = f. h2 =i. III =~. 112 '" ~

u < 1 u = 1 u > 1

M1111
.047 .031 .026

"'1122
.012 .006 .007

"'2222 .114 .113 .113

"'1212 .044 .017 .010

Table 2(b). hi =~. h2 = I, III = I. 112 = ~

a < 1 a • 1 a > 1

"'1111
.035 ,026 .026

"'1122 .009 .007 .007

M2222 .167 .167 .167

"'1212 .074 .012 .010

Table 2(c). hi =~. h2 =~, III = ~. 112 "" ~

a < 1 a = 1 a > 1

"'Ull .021 • 014 .011

"'1122 .005 .004 .003

"'2222 .147 .147 .147

"'1212 .056 • 011 .004

a < 1 a • 1 a > 1

"'1111 .015 .012 .011

"'1122 .004 .003 .003

"'2222 .334 .334 .334

"'1212 .133 .006 .004
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It is natural to ask which scaling produces the strongest structure. We can show that

(7.4a)

for symmetric tensors l.p, whenever h = h(11J); in other words, for a single family of
stiffeners with given geometry, the a = 1 plate is stronger than the a > 1 plate. The proof
of (7.4a) involves a variational characterization of M:/I~~' and M:p;); it is valid for the
general anisotropic Hooke's law (2.5).

Comparing the a = 1 and a < 1 scalings is more difficult. We conjecture that

(7.4b)

if h = h(I'II), for the isotropic Hooke's law (2.8); in other words, we believe that the a < 1
plate is the strongest in this context. The data in Tables 2(a-d) support this conjecture.
(They are slightly in violation of the condition

but this is due to round-off errors.) Another supporting observation is the inequality

for h =h(I'II) as in Fig. 1, which is a consequence of (7.1) and (7.2).
Relation (7.4b) does not extend to the anisotropic case: it is false for some elastic

materials and some choices of h =h(I'II)' We expect (7.4a) to fail as well, for more
complicated geometries h(1'11,1'12)' Thus in general the relative strength of the a < I, a = I,
and a > I plates depends on the underlying elastic material, and on the specific form of
the thickness variation. These issues will be addressed further in forthcoming article.
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APPENDIX
Hl1ml1geni:ing a rl1ugll boundary

We explain here the sense in which (5.12H5.17) correspond to "homogenizing the rough boundary then using
standard plate theory."

The phrase "homogenizing the boundary" refers to the following construction[7]. For h(x;,,) periodic in ",
let :II«() denote the (-dependent domain in R)

91(£) = (.J: Ix)1 < h(x; x/c), xeO}

with upper and lower faces 0t9l(£). If h is continuous then

(AI)

(A2)

if II has discontinuities then 0t!1t(£) have vertical regions accordingly. We denote by v' the solution of the elastic
equilibrium problem

oAO',(V')] =0 in 91(£)

( ')n' {o i = 1,2 " ()0', V i = ft(x; x/£)In/I i = 3 on tit £

v' = 0 on (~:xeoo,lx)1 < h(x; x/£)}.

(A3)

(A4)

(A5)

The method of Section 2(d) can be applied to describe v' as £ ~o. We use the same notation as in Section
5. The appropriate ansatz is

(A6)
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where /iv = (I/I,v. !/Il) is defined by (5.6), (5.7). and !/Il(x;,,;~) solves

in Q(x;O

on oQ(x;n

x~=6~+ E.,('·~

X~ = 6.\ + ~ o!/lll
• 2 0lf.

X~\ =6~~.

(A7)

(A8)

(A9)

The effective equation for l£(-!) is determined by the variational principle

m~n~ rK[/Qla;xI)Br..,.x~,X~(/(\f)e.iC\f)d-! - fwJ ' J" d-!

in which J"(x\. X2' xJ) is the mean force per unit projected area applied at height Xl; both integrals are over xeO.
IXJI < max, hex; ,,); and l£ is constrained by the analogue of (AS). It follows that l£ satisfies the equations of
elastostrtic equilibrium corresponding to an inhomogeneous "effective medium" with moduli

(AlO)

One verifies that the functions b.".. b</l33' and b33U defined by (AlO) are the same as those in Section S.
The thesis of Brizzi and Cbalot(7) shows for a related problem that u' - u· converges to zero in energy. if

h '"' he,,) does not depend on x and satisfies certain geometric hypotheses. See aI5O[22] for a related result.
Now we apply Kirchhoff plate theory to an inhomogeneous plate with elastic moduli

and slowly-varying thickness

The ansatz (2.37) must be replaced by

(All)

where

f
(b

g</l(x; ~) = t b</lH (x; t) dt.
o lm

Repeating the steps of Section 2(e). one is led to formula (5.16).


